
Stepped Pressure Equilibrium Code

casing

Constructs the field created by the plasma currents, at an arbitrary, external location using virtual casing.

[called by: bnorml.]
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1.1 theory and numerics

1. Required inputs to this subroutine are the geometry of the plasma boundary,

x(θ, ζ) ≡ x(θ, ζ)i + y(θ, ζ)j + z(θ, ζ)k, (1)

and the tangential field on this boundary,

Bs = Bθeθ + Bζeζ , (2)

where θ and ζ are arbitrary poloidal and toroidal angles, and eθ ≡ ∂x/∂θ, eζ ≡ ∂x/∂ζ. This routine assumes that the plasma

boundary is a flux surface, i.e. B · eθ × eζ = 0.

2. The virtual casing principle [Shafranov & Zakharov (1972)1, Lazerson (2012)2, Hanson (2015)3] shows that the field outside/inside

the plasma arising from plasma currents inside/outside the boundary is equivalent to the field generated by a surface current,

j = Bs × n, (3)

where n is normal to the surface.

3. The field at some arbitrary point, x̄, created by this surface current is given by

B(x̄) =

∫

S

(Bs × ds) × r̂

r2
, (4)

where ds ≡ eθ × eζ dθdζ.

4. For ease of notation introduce

J ≡ Bs × ds = α eθ − β eζ , (5)

where α ≡ Bζ = Bθgθζ + Bζgζζ and β ≡ Bθ = Bθgθθ + Bζgθζ ,

5. We may write in Cartesian coordinates J = jx i + jy j + jz k, where

jx = α xθ − β xζ (6)

jy = α yθ − β yζ (7)

jz = α zθ − β zζ . (8)

6. Requiring that the current,

j ≡ ∇× B =
√

g
−1

(∂θBζ − ∂ζBθ) es +
√

g
−1

(∂ζBs − ∂sBζ) eθ +
√

g
−1

(∂sBθ − ∂θBs) eζ , (9)

has no normal component to the surface, i.e. j · ∇s = 0, we obtain the condition ∂θBζ = ∂ζBθ, or ∂θα = ∂ζβ. In axisymmetric

configurations, where ∂ζβ = 0, we must have ∂θα = 0.

7. The displacement from an arbitrary point, (X,Y,Z), to a point, (x, y, z), that lies on the surface is given

r ≡ rx i + ry j + rz k = (X − x) i + (Y − y) j + (Z − z) k. (10)
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8. The components of the magnetic field produced by the surface current are then

Bx =

∮∮

dθdζ (jyrz − jzry)/r3, (11)

By =

∮∮

dθdζ (jzrx − jxrz)/r3, (12)

Bz =

∮∮

dθdζ (jxry − jyrx)/r3 (13)

9. When all is said and done, this routine calculates

∫

2π

0

∫

2π

0

vcintegrand dθdζ (14)

for a given (X,Y,Z), where vcintegrand is given in Eqn.(16).

10. The surface integral is performed using NAG: D01EAF, which uses an adaptive subdivision strategy and also computes absolute

error estimates. The absolute and relative accuracy required are provided by the input vcasingtol. The minimum number of

function evaluations is provided by the input vcasingits.

1.2 calculation of integrand

1. An adaptive integration is used to compute the integrals. Consequently, the magnetic field tangential to the plasma boundary is

required at an arbitrary point. This is computed, as always, from B = ∇×A, and this provides B = Bθeθ + Bζeζ . (Recall that

Bs = 0 by construction on the plasma boundary.) (It would be MUCH faster to only require the tangential field on a regular

grid!!!)

2. Then, the metric elements gθθ, gθζ and gζζ are computed. These are used to “lower” the components of the magnetic field,

B = Bθ∇θ + Bζ∇ζ. (Please check why Bs is not computed. Is it because Bs∇s × n = 0 ?)

3. The distance between the “evaluate” point, (X,Y,Z), and the given point on the surface, (x, y, z) is computed.

4. If the computational boundary becomes too close to the plasma boundary, the distance is small and this causes problems for the

numerics. I have tried to regularize this problem by introducing ǫ ≡vcasingeps. Let the “distance” be

D ≡
√

(X − x)2 + (Y − y)2 + (Z − Z)2 + ǫ2. (15)

5. On taking the limit that ǫ → 0, the virtual casing integrand is

vcintegrand ≡ (Bxnx + Byny + Bznz)(1 + 3ǫ2/D2)/D3, (16)

where the normal vector is n ≡ nxi + nyj + nzk. The normal vector, Nxyz, to the computational boundary (which does not

change) is computed in preset. This needs to be revised.
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